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ABSTRACT
The Jahaz uranium deposit is one of the several uranium oc-
currences along the “albitite line” of the North Delhi Fold Belt,
India. U-mineralization in the Jahaz area is metasomatic-type,
medium-tonnage, low-grade, and occurs as veins and dissem-
ination in the intensely altered rocks. Detailed petrographic
studies of the mineralized zones indicate a close association
of calcite and metallic minerals. Hence, carbon and oxygen
isotopic analyses of calcites were carried out to decipher the
sources of hydrothermal fluids related to U-mineralization.
The calcites of the Jahaz area are categorized into three types
(calcite-1, calcite-2, and calcite-3) based on their mode of
occurrences in host rocks. Calcite-2 and calcite-3, occurring
in cavities and fractured portions of the rocks are linked to
uranium-sulfide mineralization. The results of carbon and
oxygen isotope analyses of calcite-2 and calcite-3 indicate
that the hydrothermal fluids were derived from a magmatic
source. The δ18O values align with metamorphic fluids, while
the slight positive correlation in the δ13C–δ18O implies fluid
mixing during calcite precipitation at a lower temperature.
The isotopic signatures of δ18O strongly suggest a mixing of
fluids derived from granitic magmatism, metamorphism and
meteoric nature. The close association of uranium and meta-
somatic mineral phases in intensely altered rocks indicates
that fluid induced rock alterations played an important role
to form enriched zones of uranium in Jahaz deposit.
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1. INTRODUCTION

Na-metasomatic uranium deposits are one among
the 15 categories of uranium (U) deposits, well rec-
ognized globally, and occurs in Ukraine, Brazil,
Canada, Australia, China, Cameroon and India
(Dahlkamp, 2009). Na-metasomatism (albitization)
is a hydrothermal process in which calcium and potas-
sium in minerals are replaced by sodium (Norberg
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et al., 2011). The Na-metasomatic uranium deposits
are characterized by intense hydrothermal alterations
such as chloritization, albitization, calcitization, and
are closely related to U-mineralization (Cuney et al.,
2012). Fluids responsible for the formation of Na-
metasomatic U-deposits likely have diverse origins.
Magmatic water is indicated in the Valhalla deposit
(Polito et al., 2009), while a mixture of formation
water and metamorphic sources has been attributed
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Fig. 1. (a) Inset: Aravalli Craton in NW India. (b) Geologic map of the Aravalli-Delhi fold belt (modified after Khanam et al.,
2022). The black rectangular box is enlarged and given in Fig. 1c. The yellow rectangular box is enlarged and given in Fig. 1d.
(c) Geologic map of the “albitite line” showing selected uranium occurrences in parts of the Indian states Rajasthan and Haryana
(after Mishra et al., 2022). (d) Geologic map of Khetri Belt (after Kaur et al., 2015). (e) Geologic map of the study area Jahaz
(after Mishra et al., 2022).

for Ukrainian deposits (Cuney et al., 2012). Other
sources include fluids expelled from sedimentary se-
quences due to regional thrusting in the Lagoa Real
deposit, Brazil (Lobato et al., 2015) and meteoric
water in the case of Longshoushan deposit, China
(Zhong et al., 2020).

The Atomic Minerals Directorate for Exploration
and Research (AMDER) in India has been exploring
Na-metasomatic type of uranium deposits since 1960.
More than 350 localities with significant radioactive
anomalies have been identified from the Khetri Belt
(KB) of the North Delhi Fold Belt (NDFB; Jain et al.,
1999; Fig. 1a–c). These localities are associated with
various lithounits and lie within a 170 km long NNE-
SSW trending shear zone known as the ‘albitite line’
along the Khetri lineament of the NDFB (Fig. 1c).
The U-mineralization in the NDFB is of metasomatic
type, low-grade and medium tonnage (Khandelwal
et al., 2010). Jain et al. (2016) reported the miner-
alogical association and trace element content in the

rocks of the Jahaz area. Mishra et al. (2022) docu-
mented the stages of albite formation and an associa-
tion of sulfide-calcite minerals in altered rocks of the
Jahaz deposit.

The carbon and oxygen isotopes are one of the re-
liable proxies to understand the source of hydrother-
mal fluids, due to their consistent fractionation and
sensitivity to variations in temperature and pres-
sure during fluid-rock interactions (Schauble, 2004).
Hence, we made an attempt to infer the sources of
ore-forming fluid based on the δ13C and δ18O analy-
ses in calcite grains of albitized rocks, closely related
to U-mineralization.

2. GEOLOGICAL SETTING

The Aravalli Craton, Rajasthan, is in the north-
western part of Peninsular India, and comprises the
Archean basement rocks and the Proterozoic fold
belts (Fig. 1a, b) (Bhowmik and Dasgupta, 2012).
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The Banded Gneissic Complex (BGC; Heron, 1953)
and the Sandmata Complex (SC; Roy et al., 2012)
are the basement rocks, and are unconformably over-
lain by the Proterozoic rocks of the Aravalli Fold
Belt (AFB) and the Delhi Fold Belt (DFB; Meert
et al., 2010). The rocks of DFB have been classified
into an arenaceous-dominated older sequence (Alwar
Group) and an argillaceous-dominated younger one
(Ajabgarh Group; Sarkar and Dasgupta, 1980). The
northern and southern parts of the DFB were affected
by different deformation and metamorphic episodes
(Naha and Roy, 1983; Kaur et al., 2011a). Hence,
DFB has been divided into the North Delhi Fold Belt
(NDFB) and the South Delhi Fold Belt (SDFB) based
on depositional ages of ~1.72 Ga and ~1.05 Ga, re-
spectively (Fareeduddin and Banerjee, 2020). The
NDFB is further classified into three belts: Khetri,
Alwar and Lalsot-Bayana (Fig. 1d; Singh, 1984). The
Khetri Belt (KB) consists of quartzites, tremolite-
bearing marbles, biotite schists (±garnetiferous-
andalusite) and amphibolites. The KB has been di-
vided into the North Khetri Belt (NKB) and the
South Khetri Belt (SKB), separated by the NW-SE
trending Kantli Fault (Gupta et al., 1998; Fig. 1d).
The rocks of KB experienced four phases of defor-
mation (Naha et al., 1988) and Kaur et al. (2017)
recognized three metamorphic episodes in the KB.
The rocks of KB were metasomatized extensively at
~900–850 Ma and can be correlated with the third
metamorphic stage (U-Pb dating; Kaur et al., 2016).

The study area, Jahaz (Fig. 1e), is mostly
soil-covered and rock exposures are found along
the NNE-SSW trending Maota-Jahaz hill (Yadav
et al., 2010). Quartzites, garnetiferous quartz-biotite
schists, graphite-schists and amphibolites are the ma-
jor metamorphic rocks found in the area and corre-
lated with the Ajabgarh Group of SKB in the NDFB.
Jain et al. (2016) reported a shear zone with extensive
brecciation and alterations in the Jahaz area based on
sub-surface borehole investigations. The metamor-
phic rocks are found to be albitized and brecciated to
varying degrees. The uranium-sulfide mineralization
is broadly confined to the brecciated and albitized
metamorphic rocks (Mishra et al., 2022).

3. METHODOLOGY

Rock samples were collected from boreholes (B1–
B4 as shown in Fig. 1e) and surface exposures near
a river section of the Jahaz deposit. Polished thin-

sections were prepared and studied using a polariz-
ing microscope NIKON ECLIPSE E200 at the De-
partment of Earth Sciences, Indian Institute of Tech-
nology Roorkee (IIT), India. The calcite grains
within albitized rocks are closely related with U-
mineralization. Therefore, the C and O isotope anal-
yses of representative calcite samples were carried out
on Thermo Scientific MAT253 Plus 10 kV Thermo
MAT 253 isotope ratio mass spectrometer (IRMS)
with Kiel IV carbonate preparation device at the
Stable Isotope Laboratory, Department of Earth Sci-
ences (IIT Roorkee), India. The analytical procedure
given by Zha et al. (2010) was adopted to delineate
the isotopic composition of the samples. The results
are presented as δ13CVPDB and δ18OVSMOW relative
to Vienna Pee Dee Belemnite (VPDB) and Vienna
Standard Mean Ocean Water (VSMOW). The analyt-
ical precision is 0.01‰ for δ13C and 0.03‰ for δ18O.

4. RESULTS

4.1. Petrography of rocks
The host rocks are divided into three categories

based on the intensity of alteration: unaltered, less
to moderately, and intensely altered rocks. Gar-
netiferous quartz biotite schist (GQBS; Fig. 2a), am-
phibolite (Fig. 2b), quartzite (Fig. 2c) and graphite
schist are the dominant metamorphic rocks in the
study area. The major minerals in the GQBS are
biotite, quartz, plagioclase, muscovite and almandine
(Fig. 2e). Amphibolite consists of ferro to magnesio-
hornblende, bytownite/anorthite, and quartz with a
minor amount of ilmenite (Fig. 2f). Quartzite pre-
dominantly consists of quartz, whereas muscovite, or-
thoclase, and tourmaline are less abundant (Fig. 2g).

Less to moderately altered (LTMA) rocks have re-
tained parent metamorphic minerals, color, and tex-
ture (Fig. 2h). The minerals of LTMA rocks formed
due to the replacement of pre-existing metamorphic
minerals, and are considered as the first metasomatic
stage. Albite-1, calcite-1, amphibole-1, chlorite-1,
quartz-1, and sericite formed due to the alteration of
pre-existing minerals in the GQBS and amphibolite.
The metasomatically formed minerals of intensely al-
tered rocks occur in vugs and cavities, developed by
dissolution and precipitation, and are termed as the
second metasomatic stage (Fig. 2i). Albite-2 is feath-
ery, calcite-2, amphibole-2, chlorite-2, apatite, and
quartz-2 occur as veinlets and also in cavities (Fig. 2i–
k). The uranium and sulfide (pyrite, pyrrhotite, chal-
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Fig. 2. Hand specimens (a–d): (a) Garnetiferous quartz biotite schist. (b) Amphibolite. (c) Quartzite. (d) Albitized rock.
Photomicrographs (e–l): (e) Plagioclase, quartz and biotite in GQBS. (f) Amphibole and plagioclase closely associated in amphi-
bolite. (g) Quartz and muscovite in quartzite. (h) Albite-1, quartz-1, chlorite-1 and sericite found in LTMA. (i) Albite-2 and
calcite-2 in albitized rocks. (j) Apatite and albite-2 in the albitized rock. (k) The close association of Uranium, chlorite-2 and
albite-2. (l) Chalcopyrite, pyrrhotite and pyrite found in albitized rocks. Abbreviations: Ab-Albite, Amp-Amphibole, Ap-Apatite,
Bt-Biotite, Cal-Calcite, Ccp-Chalcopyrite, Chl-Chlorite, Ms-Muscovite, Pl-Plagioclase, Po-Pyrrhotite, Py-Pyrite, Qz-Quartz, Ser-
Sericite, Ur-Uraninite.

copyrite, and molybdenite) minerals are closely asso-
ciated with intensely altered rocks (Fig. 2k, l). It has
also been observed in many thin sections that quartz-
3 and calcite-3 occur as veinlets and are occasionally
associated with pyrrhotite/chalcopyrite. These vein-
lets cut- across both the altered and unaltered rocks
and are related to late hydrothermal stage (Fig. 3b).

4.2. Petrography of calcite

The calcites are categorized into three types
(calcite-1, calcite-2, and calcite-3) based on the mode
of their occurrences in rocks (Fig. 3). Calcite-1 is
very fine, sparsely present in the LTMA amphibo-
lite/GQBS rocks and unassociated with mineraliza-

tion (Fig. 3a, d). In contrast, calcite-2 is coarse
grained and occurs in cavities of the intensely altered
amphibolite/GQBS (Fig. 3b, e). The calcite-2 is ob-
served to be spatially and temporally associated with
albite-2, chlorite-2 and sulfide mineralization in the
albitized rocks. Therefore, the formation of uranium
and calcite-2 are considered to be a part of the meta-
somatic assemblage. Calcite-3 is found within vein-
lets in fractured portions of the rocks and occasionally
linked to sulfide mineralization (Fig. 3c, f).

4.3. Isotopic compositions

The δ18O and δ13C values of calcite-2 and calcite-
3 are summarized in Table 1. δ18O values measured
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Fig. 3. (a) Hand specimen of less to moderately altered amphibolite. (b–c) Hand specimen of calcite-2 and calcite vein (calcite-3)
associated with albitized rocks. (d) Calcite-1 in the LTMA amphibolite. (e) Calcite-2 and pyrrhotite. (f) Calcite-3 cross-cut
albitized rock associated with pyrrhotite. Abbreviations: Ab-Albite, Amp-Amphibole, Cal-Calcite, Po-Pyrrhotite, Qz-Quartz.

Table 1. Carbon and oxygen isotopic compositions of calcite grains.
S.No. δ13C- VPDB δ18O-VPDB δ18O SMOW Mineral
1 -6.15 -18.24 12.05 Calcite-3
2 -6.52 -16.82 13.52 Calcite-3
3 -6.53 -17.87 12.44 Calcite-3
4 -6.88 -18.43 11.86 Calcite-3
5 -7.11 -18.95 11.32 Calcite-3
6 -6.04 -19.46 10.80 Calcite-3
7 -6.78 -18.53 11.75 Calcite-2

against PDB were converted to the V-SMOW scale
using the equation δ18O (V-SMOW) = 1.03092 ×
δ18O (PDB) + 30.92. For calcite-2, δ13C (VPDB)
and δ18O (V-SMOW) values range from -6.78‰ and
11.75‰, respectively (Fig. 4a, b). In calcite-3, δ13C
(VPDB) values vary from -7.11‰ to -6.04‰, while
δ18O (V-SMOW) ranges from 10.8‰ to 13.52‰
(Fig. 4a, b). The δ13C values of these calcites are de-
pleted relative to PDB, falling between -7.11‰ and
-6.78‰, while δ18O values are enriched relative to
V-SMOW, spanning 10.8‰ to 13.52‰ (Table 1).

5. DISCUSSION

The narrow δ13C range of -7.11 to -6.78‰ sug-
gests that the hydrothermal fluid from which calcite
precipitated was derived from magma exsolution dur-
ing a late magmatic stage, aligning well with the typ-
ical magmatic range of -7 to -2‰ (Fig. 4a; Rollinson,
1993; Zheng and Hoefs, 1993). The δ18O values of
calcites predominantly fall within the metamorphic
fluid range, while also indicating contributions from
other hydrothermal fluids, including granitic, sedi-
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Fig. 4. Isotopic composition in calcites: (a) Carbon isotopic compositions (modified after Hu et al., 2022). (b) Oxygen isotopic
compositions (modified after Zheng and Hoefs, 1993). (c) Carbon and oxygen isotope compositions (‰ relative to V-PDB and
V-SMOW, respectively) of fluid calculated for calcites (modified after Demény et al., 1998).

mentary, and meteoric sources (Fig. 4b; Rollinson,
1993; Demény et al., 1998). The bivariate plot of
δ18O and δ13C values for calcites (Fig. 4c) reveals a
slight positive correlation, which may reflect the mix-
ing of two isotopically distinct fluids or calcite precip-
itation influenced by temperature effects during fluid-
rock interaction (Zheng and Hoefs, 1993; Zhou et al.,
2018). The δ13C (VPDB) versus δ18O (V-SMOW)
plot further supports the interpretation that the cal-
cites in albitized rocks formed under low-temperature
conditions (Fig. 4c). Thus, Fig. 4a and b indicate the
contribution of fluids from similar sources related to
the formation of both calcite-2 and calcite-3. This
gives an idea that the fluids responsible for intense al-
terations continued to form minerals during the late
hydrothermal stage. The isotopic signatures of δ18O
(Fig. 4b) strongly suggest a mixed fluid source, de-
rived from granitic magmatism, metamorphism and
meteoric input. The close association of uranium and
metasomatic mineral phases in intensely altered rocks
implies that fluid induced rock alterations played an
important role to form enriched zones of uranium in
Jahaz deposit.

6. CONCLUSIONS

1. The results of carbon and oxygen isotopic stud-
ies of calcite-2 and calcite-3 reveal that the hy-
drothermal fluids were derived from a magmatic
source.

2. The δ18O values primarily indicate interaction
with metamorphic fluids, while the slight posi-
tive correlation in the δ13C-δ18O plot suggests
fluid mixing or temperature effects during cal-
cite precipitation.

3. The carbon-oxygen isotopic signatures of calcite
strongly suggest a mixed fluid source, derived
from granitic magmatism, metamorphism and
meteoric input.

4. Magmatic and additional hydrothermal flu-
ids were responsible for metasomatism and U-
mineralization in the intensely altered rocks.
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